A penalized Cox proportional hazards model with multiple time-varying exposures
نویسندگان
چکیده
منابع مشابه
L1 penalized estimation in the Cox proportional hazards model.
This article presents a novel algorithm that efficiently computes L(1) penalized (lasso) estimates of parameters in high-dimensional models. The lasso has the property that it simultaneously performs variable selection and shrinkage, which makes it very useful for finding interpretable prediction rules in high-dimensional data. The new algorithm is based on a combination of gradient ascent opti...
متن کاملBayesian proportional hazards model with time-varying regression coefficients: a penalized Poisson regression approach.
One can fruitfully approach survival problems without covariates in an actuarial way. In narrow time bins, the number of people at risk is counted together with the number of events. The relationship between time and probability of an event can then be estimated with a parametric or semi-parametric model. The number of events observed in each bin is described using a Poisson distribution with t...
متن کاملTime-dependent covariates in the Cox proportional-hazards regression model.
The Cox proportional-hazards regression model has achieved widespread use in the analysis of time-to-event data with censoring and covariates. The covariates may change their values over time. This article discusses the use of such time-dependent covariates, which offer additional opportunities but must be used with caution. The interrelationships between the outcome and variable over time can ...
متن کاملGradient lasso for Cox proportional hazards model
MOTIVATION There has been an increasing interest in expressing a survival phenotype (e.g. time to cancer recurrence or death) or its distribution in terms of a subset of the expression data of a subset of genes. Due to high dimensionality of gene expression data, however, there is a serious problem of collinearity in fitting a prediction model, e.g. Cox's proportional hazards model. To avoid th...
متن کاملThe Cox Proportional Hazards Model with a Partially Known Baseline
The Cox proportional hazards regression model has been widely used in the analysis of survival/duration data. It is semiparametric because the model includes a baseline hazard function that is completely unspecified. We study here the statistical inference of the Cox model where some information about the baseline hazard function is available, but it still remains as an infinite dimensional nui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2017
ISSN: 1932-6157
DOI: 10.1214/16-aoas999